

Forklarende tekst

R earth	Måling av husets jordelektrode ringjord, spyd etc.			
R+- 200mA Contiunitet	Måling av jordleder i kabel og utjevingsforbindelse inne i installasjonen			
R insulation	Isolasjonsmåling mellom fase og jord (Megge)			
RCD	Kontroll av Jordfeilbryter.			
Z-line	Kortslutningsmåling mellom fase/fase i IT/TT og TN-nett			
ZLoop	Kortslutningsmåling mellom fase og PE beskyttelsesleder i 400V TN-nett.			
RLoop	Kortslutningsmåling og sløyfeimpedanse Mellom Null-leder og PE- leder i et 400V TN-nett.			

Del 6 - Verifikasjon

Kapittel 61 – Verifikasjon av en ny installasjon

6.10.2

Enhver installasjon skal inspiseres visuelt og prøves for å verifisere at kravene i normen er oppfylt <u>før</u> installasjonen settes i drift av brukeren.

- > Den som er ansvarlig for utførelse skal Besørge verifikasjon.
- 6.10.2 Når installasjonen er en utvidelse eller endring av en eksisterende installasjon, skal det verifiseres at utvidelsen eller endringen ikke svekker sikkerheten ved den opprinnelige installasjonen.
- 6.10.2 Verifikasjonen skal utføres av en kvalifisert person. Etter utført verifikasjon skal det lages en sluttrapport. Rapporten leveres eieren av det elektriske anlegget.
- 612 Måling/prøving

612.1 Generelt

Følgende prøvinger skal utføres der dette er relevant og bør helst gjøres i denne rekkefølge:

INNHOLD:

1.	Kontinuitet i jordledere og i utjevningsforbindelser (se 612.2)	side 4-5		
2.	Isolasjonsresistansen for den elektriske installasjonen (6.12.3)	side 6 -8		
3.	Automatisk utkobling av strømforsyningen (se 6.12.6)			
3.1	Måling av overgangsresistansen til jord	side 9-11		
3.2	Måling av kortsluttningsstrøm (Ikmin / Ikmaks)	side 12-15		
3.3 4. La	Kontroll av Jordfeilbryter gre måleverdier	side 16-17 side 18		
5. Br	uk av software	side 18		
6. Br	uk av SETUP Menyen	side 19		
7. Feilmelding "Farlig PE spenning" side 2				

INSTRUMENT BESKRIVELSEFront panelFig. 1. Front panel

NB HUSK Å SETTE INN BATTERIER 4 STK. LR14 I TESTER

Beskrivelse:

- 1 ON/OFF knapp, tenner og slukker instrumentet. Instrumentet slukker automatisk etter 10 minutter, hvis funksjonsomskifter eller knapper ikke har hvert aktivert.
- 2 HELP knapp, hjelpemeny fremkommer på displayet (Tilslutning av testkabler og andre data).
- 3 Light knapp, tenner eller slukker lys i displayet. Lyset slukker automatisk etter 20 sek., hvis funksjonsomskifter eller knapper ikke har vært aktiverende.
- 4 RCL knapp, fremkaller de lagrede målinger.
- 5 SAVE knapp, lagrer de målte verdier.
- 6 PE berøringselektrode, tester PE terminal (tilstedeværelse av fasespenning ved feil).
- 7 START knapp, for at starte enhver måling.
- 8 SETUP knapp til:
 - Display kontrast.
 - Tid og Dato.
 - Kommunikasjonsparameter.
 - Slette alle innprogrammerede oppsettninger.
 - Valg av nettsystem TN/TT -. IT
- 9 ESC knapp, springer startprosdyre over (lagring/gjenkald testresultat,
- slet innprogrammerede oppsetninger etc.).
- 10 Matrix LCD display med lys
- 11 Funksjonsomskifter, velg ønsket parameter, der skal testes. I flere tilfelle kan to eller flere parametere testes i samme posisjon.
- 12 Seleholder, til fiksering av bæresele.
- 13 Funksjonsknapper, velg og Sett de forskjellige parametere i hver funksjon.

Side 4

1. Kontinuitet i jordledere og i utjevningsforbindelser

R+/- 200mA, Continuity

En kontinuitetsprøving skal utføres. Det anbefales at prøvingen utføres med en strømforsyning som har en spenning i ubelastet tilstand på mellom 4 V og 24 V DC eller AC, og med en minimum strøm på 0,2 A.

Hvordan utføres målingen?

- Tilslutt testkablene (Universal testkabel eller den fjernbetjente testprobe) til Eurotest 61557.
- Sett funksjonsomskifteren i R±200mA / CONTINUITY området, "R±200mA"

Trykk på FUNC (F1) knapp. Funksjonen er valgt, når $\mathbf{R} \pm 200 \text{ mA}$ fremkommer på displayet, se fig. 8.

10.0 Ω Sist valgte motstandsverdi.
 R+.......*Resultat (Blå testledning er* tilsluttet den **positive** Spenningsterminal).
 R-.....*Resultat (Blå testledning er* tilsluttet den **negative** Spenningsterminal).

Fig. 8.

1. Trykk Hlim sett til 1 Ohm (anbefalt grenseverdi for kontinuitets test)

PS! Se neste side utførelse av kompensering av måleledninger.

1. Kontinuitet i jordledere og i utjevningsforbindelser

Hvordan kompensere for motstanden i prøveledningene?

- 1. Kortslutt prøveledningene, se fig. 10.
- 2. Trykk og slip **START** knapp for at utføre målingen.
- 3. Trykk og slipp **Comp** (F4) knapp, **Compensating t. leads** beskjed vises et øyeblikk, og verdien vil efterfølgende endre sig til 0,00 Ω og **Co** vises øverst i displayet, som initiering for at kompensering av testledning er utført.
- 4. Instrumentet er klar til test.
- 5. For at annullere kompenseringen, utføres samme prosedyre med åpne testledninger. **Co** markeringen forsvinner fra displayet, og kompenseringen er annullert. Samme funksjon er også mulig i **Gjennomgangstest**.

2. Isolasjonsmåling for den elektriske installasjonen **R** INSULATION

Isolasjonsresistansen skal måles mellom hver spenningsførende leder og jord.

TABELL 61 A – minimumsverdier for isolasjonsresistans.

Nominell kretsspenning (V)	Prøvingsspenning DC (V)	Isolasjonsresistans (MΩ)
SELV og PELV	250	≥ 0,5
Opp til og med 500 V, med unntak av ovenstående	500	≥ 1,0
Over 500 V	1000	≥ 1,0

2. Isolasjonsmåling for den elektriske installasjonen

Hvordan utføres målingen? **Step 1**

Tilslutt testkabler (Universal testkabel eller testprobe) til Eurotest 61557. Sett funksjonsomskifter i **RISO** posisjon, følgende meny vises i displayet:

 R ISO 50 V
 1 MΩ

 Image: MO big conduction
 Image: MO big conduction

 18 : 35 : 27
 Uiso

 Llim
 Image: Mo big conduction

1 MΩ.....Senest satte minste grense for motstandsverdi.

50 V ... Sist valgte testspenning.

Um.....Aktuell testspenning.

Fig. 4. Isolasjonsmotstand, meny

Step 2

Velg **Testspenning**, bruk **Uiso** (F1) knapp. Spenningen kan velges til 50, 100, 250, 500 eller 1000 V. Testspenning kan avleses øverst i displayet.

Step 3

Sett Laveste tiltatte isolasjonsmotstands verdi. Testresultatet vil bli sammenlignet med denne verdi, og hvis verdien er lavere enn tidligere innskrevet verdi, vil målingen bli merket med symbolet ! og resultat under grenseverdi beskjed.

Hvordan innstilles laveste grenseverdi ?

Trykk på Llim (F2) knapp, for å komme til "Lav grenseverdi", se figur 5:

Fig. 5. Meny og tabell for justering av grenseverdier

2. Isolasjonsmåling for den elektriske installasjonen

Hvordan utføres målingen?

Step 3

Verdier mellom 0,01 M Ω og 200 M Ω , kan settes ved bruk av \uparrow (F2) og \downarrow (F3) knapper. Hvis testresultatet ikke skal sammenlignes med grenseverdi, trykk på **Off** (F4) knapp. Grenseverdi (vist i øverste linje av displayet) vil endres til Φ M Ω . **Off** vil skifte til **On**, gjentagende trykk på (F4) knapp vil skifte mellom **On** og **Off**.

Trykk på **Back** (F1) knapp, etter grenseverdi er valgt, for å returnere til " Isolasjonsmotstand, meny" **(se figur 4).**

Step 5

Trykk på **START** knapp og hold den nede til verdien er stabilisert, heretter slippes knappen. Testresultatet vise på displayet. Se eks. figur 7

Fig. 7. Eks. på isolasjonsmotstand måling

For å lagre måleresultat se avsnitt 4.3 i brukermanual "Lagring av testresultater."

3. måling av overgangsresistansen til jord

R Earth

Generelt:

Formålet er å kontrollere at samlet resistans i jordelektrode og beskyttelsesleder ikke er større enn at forventet berøringsspenning ikke overstiger 50V.

NB!

Med jordleder tilkoblet jordelektroden vil andre deler av jordingssystemet (vannrør, stålkonstruksjoner, energiverkets jord) inngå i målingen. Skal kun overgangsresistansen i jordelektroden måles,

<u>må jordleder frakobles.</u>

Hva som inngår i målingen <u>bør</u> dokumenteres i sluttrapporten.

Tilslut testkabler til objektet trykk på HJELP knapp for informasjon om basistilslutning).

Avstand ut til det ytterste spydet skal minimum være 5 x diagonal avstand ihht til husets grunnflateflate.

3. måling av overgangsresistansen til jord

Hvordan utføres målingen? **Step 1**

Sett funksjonsomskifteren i **RE** posisjon, "Earth Resistance" eller "Earth Resistivity" meny vises i displayet.

Velg Earth Resistance funksjon (Standard fireleder metode), bruk FUNC (F1) knap. Jordmotstandsfunksjonen (standard fireleder metode) er valgt, når **R EARTH** fremkommer i displayet, se fig. 19.

Rc Motstand i Strømelektrode Rp Motstand i Spenningselektrode

Fig. 19. Meny for jordmotstandsmåling

Step 2

Sett Høy grense jordmotstand verdi. Senere vil testresultatet sammenlignes med grenseverdien, og hvis den er større, viser displayet "!" resultata over limit.

Hvordan Settes Høy grenseverdi ?

Trykk på Hlim (F2) knapp for at komme til "Still høy grenseverdi" meny, se figur 20.

Fig. 20. Grenseverdi meny og tabell over mulige grenseverdier.

Verdier mellom 1 Ω og 5000 Ω , i henhold til ovenstående tabell kan velges ved bruk av \uparrow (F2) og \downarrow (F3) knappene. Skal måleverdien ikke sammenlignes med grenseverdiene, trykkes på **Off** (F4) knapp. Sett grenseverdi (Vises øverst i displayet) vil endres til $\Phi\Omega$. Et trykk på **Off** (f4) knapp vil skifte til **On**. **On** / **Off** kan skiftevis velges ved trykk på F4.

Trykk på **Back** (F1) knapp etter grenseverdien er valgt for at returnere til meny for jordmotstandsmåling (se figur 19).

For a lagre maleresultat se avsnitt 4.3 i brukermanual "Lagring av testresultater."

3. måling av overgangsresistansen til jord

Beregning av strøm ved første jordfeil.

Størrelsen på feilstrømmen ved første jordfeil vil erfaringsmessig være avhengig av størrelsen på fornkoblet trafo (oppgis av E-verket).

Lekkasjestrømmen er ca. 2 mA / KVA transformatorytelse.

Eksempel: 500 KVA trafo x 2 mA = 1000 mA = 1A jordfeilstrøm

Kjenner man forventet lekkasjestrøm (2mA/KVA), beregnes maksimal overgangsresistans til jord: $R_A = 50$ = 50 Ω Maksimal overgangsresistans til jord = 50 Ω 1

Trafostørrelse / Kva	Jordfeilstrøm/ Amp	Maksimal avlesteovergangsresistans til Jord
300	0,6	83,3 Ω
500	1,0	50,0 Ω
1000	2,0	25,0 Ω
1200	2,4	20,8 Ω
1600	3,2	15,6 Ω

Generelt:

I et TT og IT-anlegg er det krav til jordfeilbryter i hele installasjonen. Beregning av maksimal overgangsresistans blir derfor enkel:

Eksempel: Vi har en 30mA jordfeilbryter i et område med maksimal tillatt berøringsspenning på 50V.

$R_A = U_L / I_{\Delta n} = 50 / 0.03 = 1666\Omega$

	I _{∆n (mA)}	10	30	100	300	500
R _A	$U_L = 50V$	5000	1666	500	166	100
R _A	$U_L = 25V$	2500	833	250	83	50

Tabellen viser maksimal tillatt overgangsresistens til jord, avhengig av jordfeilbryter og tillatt berøringsspenning

3.2 Måling av kortsluttningsstrøm (Ikmin / Ikmaks) med foran koblet jordfeilbryter ZLine

Minste kortslutningsstrøm måles ytterst på hver kurs for å kontrollere at kortslutningsstrømmen er stor nok til å løse ut kurssikringen innen fastsatt tid.

Det skal kontrolleres/måles at ledninger og kabler tåler de termiske og mekaniske påkjenninger ved eventuell kortsluttning

-

IK maks (Målt verdi IT/TT / TN) Mellom fase/fase eller Fase/Nøytral leder.

IK2 MAX måles med instrumentet på enden av kursen IK1 MAX måles med instrumentet på enden av kursen

For å finne Minste kortslutningsstrøm på kursen gjøres følgende utregning

Målt verdi x 0,76 = IK 2 min (IT og TT –nett m/jordfeilbryter) Målt verdi x 0,76 = IK 1 min (TN-nett)

Ved å bruke tabellen neste side slipper man denne utregningen. Den målte verdien i displayet sammenlignes direkte med verdiene i tabellen

Utkoblingstid 5 s; 0.8s, 0,4 s; 0						1 s	
Merkestrør	Karakt	Karakteristikk B		Karakteristikk C		Karakteristikk D	
I _N [A]	(tidligere L) (tidligere G, U) Utløsestrøm I ₅ Utløsestrøm I ₆		(tidligere G, U)				
			estrøm I ₅	Utløsestrøm I ₅			
	5 x I _n		1	10 x l _n		20 x I _n	
	Grensev.	Min.anvisn.	Grensev.	Min.anvisn.	Grensev.	Min.anvisn.	
6	30	40	60	79	120	160	
8	40	53	80	105	160	210	
10	50	66	100	131	200	263	
13	65	86	130	171	260	342	
16	80	105	160	210	320	421	
20	100	131	200	263			
25	125	164	250	328			
32	160	210	320	421			

For at vernet skal garantert utkoble innen fastsatt tid må den målte verdien være høyere enn tabellverdien (rød)

3.2 Måling av kortsluttningsstrøm (Ikmin / Ikmaks) uten foran koblet jordfeilbryter

IK2 min

Denne kontrollen benyttes i de installasjoner som er tilknyttet Egen Trafo.

Måling av kortsluttningsstrømmen i IT - nett ved dobbel jordslutning (IK2 min jord) er ikke mulig med 100 % riktig resultat.

Men du kan gjøre noen beregninger , for å få en indikasjon på hvor liten kortsluttningsstrøm kan være i installasjonen ved dobbel jordfeil. Minste kortslutningsstrøm

I et IT-system vil minste kortslutningsstrøm være to jordfeil i samme installasjon jordlederen vil føre en kortslutningsstrøm mellom de to feilstedene via anleggets PE - skinne. NEK 400 anbefaler å ta utgangspunkt i at jordfeil nr. 2 oppstår i enden av en "tenkt identisk" kurs slik det er vist på figuren.

Ved å bruke tabellen neste side slipper man denne utregningen. Den målte verdien i displayet sammenlignes direkte med verdiene i tabellen Målt verdi x 0,38 = IK 2 min (IT og TT –nett u/jordfeilbryter)

	Utkoblingstid 5 s; 0.8s, 0,4 s; 0,2 s; 0,1 s						
Merkestrør	(estrør Karakteristikk B			Karakteristikk C		Karakteristikk D	
I _N [A]	(tidligere L)		(tidligere G, U)				
	Utløs	estrøm I ₅	Utløs	Utløsestrøm I ₅		Utløsestrøm I ₅	
	5	x I _n 10 x I _n		10 x l _n) x l _n	
	Grensev.	Min.anvisn.	Grensev.	Min.anvisn.	Grensev.	Min.anvisn.	
6	30	79	60	158	120	315	
8	40	105	80	210	160	421	
10	50	131	100	263	200	526	
13	65	171	130	342	260	684	
16	80	210	160	421	320	842	
20	100	263	200	526			
25	125	329	250	657			
32	160	421	320	842			

For at vernet skal garantert utkoble innen fastsatt tid (se tabell 41 B) må den målte verdien være høyere enn tabellverdien (rød)

3.2 Måling av kortsluttningsstrøm (Ikmin / Ikmaks)

Hvordan utføres målingen!

PS! Z-Line måler mellom fase/fase IT-TT og fase/N leder i et TN-nett

Step 1

Tilslut testledninger eller testprobe til Eurotest 61557. Sett funksjonsomskifter i ZLINE posisjon, meny iht. figur 58, vises i displayet.

Isc....Forventet kortslutningsstrøm R.....Resistiv del av impedansen. XL....Innuctiv del av impedansen. Uln...Spenning mellem fase (L) og null (N).

i igi coi zznicz impedante i

Step 2

Tilslutt testkabel til objektet der skal testes, iht. fig. 59 og 60 (Trykk på **HELP** knapp for informasjon om basistilslutning).

3.2 Måling av kortsluttningsstrøm (Ikmin / Ikmaks)

3.11. ZLoop Impedans og forventet kortslutningsstrøm

PS! Denne målingen utføres i et TN-Nett mellom fase L og PE.

TN-Nett

I et TN nett skal det også måles de kortslutningsstrømmer som oppstår mellom fase og PE leder. Det er dette NEK 400 definerer som Feilsløyfeimpedansen.

Hvordan utføres målingen ? **Step 1**

Tilslutt testledninger eller testprobe til Eurotest 61557. Sett funksjonsomskifteren i ZLOOP posisjon, følgende meny vises, se figur 52

Isc..... Forventet kortslutningsstrøm R...... Resistiv del av impedansen. Xl..... Innuktiv del impedansen. Ulpe... Spenning mellem fase (L) og beskyttelsleder (PE).

Fig. 52. ZLoop impedans meny

Step 2

Velg **Test strøm Start Polaritet**, bruk **POL** (F1) knapp. Polariteten kan enten være positiv eller negativ . Den valgte polaritet vises øverst i displayet.

Hvorfor velge polaritet ?

I noen tilfelle kan det skje, at Jordfeilbryteren ikke kobler ut, når testen utføres. Noen Jordfeilbrytere er mer følsomme over for det positive signal, og andre over for det negative signal. Hvis en teststrøm i ZLOOP impedans måling kun har flow igjennom en halv periode, vil Jordfeilbryteren ikke nødvendigvis utkoble.

3.3 Kontroll av Jordfeilbryter **RCD**

Test av jordfeilbryterens utløsertid

Hvordan utføres målingen ? Step 2

Velg **Utkoblingstid funksjon**, bruk **FUNC** (F1) knapp. Funksjonen er valgt, når **RCD t** vises øverst i displayet, se figur 40.

- Ulim. Tidligere valgt grenseverdi for Berøringsspenning.
- Uc Berøringsspenning ved nominel strøm Ulpe Spenning mellem fase L og

beskyttelsleder PE.

Fig. 40. Meny for utkoblingstid

Step 3

Velg **Nominal feilstrøm I** Δ **n**, bruk **I** Δ **n** (F2) knapp. Der kan velges mellom 10, 30, 100, 300, 500 eller 1000 mA og vises øverst i displayet.

Step 4

Velg **Multiplikation av nominal feilstrøm**, bruk **MUL** (F3) knapp. Multiplikasjonsfaktoren fastsetter teststrømmen, for eksempel $I_{\Delta n} = 100 \text{ mA}$,

multiplicer = 5, teststrømmen blir da = 500 mA. Multiplikasjonsfaktoren kan være $\frac{1}{2}$, 1, 2 eller 5, og vises øverst i displayet. Multiplikasjonsfaktor × 5 er ikke mulig, hvis I Δ n = 1000 mA er valgt.

Step 5

Velg Type av feilstr.avb og startpolaritet av teststrøm, bruk TYPE (F4) knapp.

Typen kan være standard (<u>G</u>eneral, G vises øverst i displayet) eller <u>s</u>elektive (S vises øverst i displayet), mens polariteten kan være positive (0°) eller negativ (180°), se figur 41. Inskriptionerne **positiv G**, **negativ G**, **positiv S** og **negativ** S vil skifte øverst i displayet, med gjentagende trykk på TYPE knapp.

Positiv start polaritet (0°)

Negativ start polaritet (180°)

Fig. 41. Start polaritet av teststrøm

3.3 Kontroll av Jordfeilbryter

Test av jordfeilbryterens utløsestrøm

Hvordan utføres målingen ?

Step 1

Følg step 1, beskrevet i avsnitt **3.7. Berøringsspenning**, med unntagelse av velg Jordfeilbryter funksjon, se neste stepp.

Velg Utkoblingsstrøm funksjon, bruk FUNC (F1) knapp. Utkoblingsstrøm

Step 2

Fig. 43. Meny for utkoblingsstrøm

- Ulim Tidligere valgt grenseverdi for Berøringsspenning.
 Uci Berøringsspenning ved utkoblingsstrøm I∆.
 t Utkoblingstid ved utkoblings-strøm I∆.
 - Ulpe .Spenning mellem fase L og .beskyttelsleder PE.

Step 6

Trykk kortvarig på **START** knapp. Vent til målingen er ferdig og avles resultatet på displayet, se figur 44.

Fig. 44. Eksempel på test av utkoblingsstrøm

For at lagre testresultatet se avsnitt: 4.3. Lagring av testresultatet. I brukermanualen.

Lagre måleresultater

4.3. Lagring av testresultat

Alle testresultater kan lagres med unntagelse av U L-PE eller U L-N Spenning (I RLOOP N-PE, ZLOOP, ZLINE og RCD funksjonene) og gjennomgang.

Hvordan lagres testresultatene?

Straks testresultatet vises på displayet, kan følgende prosedyre utføres.

Step 1

• Trykk på **SAVE** knapp, siste del av installasjonsstruktur vil bli tilbudt, se figur 95.

- Alle målinger vedheftet (Kun via PC SW software) til målestedet er allerede utført, og resultat er lagret. Brukeren kan til enhver tid se hvilke målinger, som ikke er utført, og hvor de er.
- Bemerk! "✓" tegnet blir automatisk vedheftet, når målingen er utført.

Fig. 95. Eksempel på siste del av installasjonsstruktur, tilbudt for lagring av testresultat

PS! For videre prosedyre se i kapittel 4.3 i Brukermanualen.

Bruk av PC software

4.2. Oppbygg installasjonsstruktur på PC

For informasjon om hvor de lagredetestresultater hører til, kan en hukommelse organiseres og navngies iht. den aktuelle installasjon og dens oppbygning.

Denne organisering kaldes **Installasjonsstruktur** og kan oppbygges av brukeren enten direkte på Eurotest 61557, eller på PC med "PC SW Euro Link" installert. Installasjonsstruktur oppbygget på PC overføres direkte til Eurotest 61557. Overført struktur kan senere blive tilpasset gjennom instrumentets meny, hvis det er nødvendig.

Hvordan oppbygges Installasjonsstruktur på PC?

PS! For videre prosedyre se i kapittel 4.2 i Brukermanualen.

4. OPPSETNING

4.1. Setup funksjoner

Følgende kan utføres i Setup menyen:

- Display kontrast justering (mellom 0 og 100 %)
- Ur & dato
- Kommunikasjonsparameter Baud (2400, 4800, 9600 eller 19200)
- Slettning av alle lagrede resultater

Trykk på **SETUP** knapp for at komme til setup meny, se figur 93.

Hvordan justeres display kontrasten ?

- Sett cursor ut for **kontrast** linjen, bruk \downarrow (F2) knapp.
- Trykk $pa \rightarrow (F3)$ knapp for at komme inn i kontrast justeringsmeny.
- Juster til ønsket kontrast, bruk \uparrow (F2) og \downarrow (F3) knapper.
- Trykk på **Back** (F1) knapp for å forlate kontrast justeringsmeny.

Hvordan justeres ur & dato?

- Sett cursoren ut for Ur & Dato linjen, bruk \downarrow (F2) knapp.
- Trykk $pa \rightarrow (F3)$ knapp for at komme inn i Ur & Dato meny.
- Juster ur og dato bruk ↑ (F2) og ↓ (F3) knapper. For at flytte cursoren under tallene bruk
 → (F4) knapp.
- Trykk på **Back** (F1) knapp for at forlade Ur & Dato justeringsmeny.

Uret starter først når der trykkes på **Back** (F1) knapp.

Hvordan Sette kommunikasjonshastigheten (Baud rate)?

- Sett cursor ut for **Kommunikasjon** linjen, bruk \downarrow (F2) knapp.
- Trykk $pa \rightarrow (F3)$ knapp for at komme inn i Kommunikasjonsmeny.
- Sett Baud Rate bruk \uparrow (F2) og \downarrow (F3) knapper.
- Trykk på **Back** (F1) knapp for at forlade Kommunikasjonsmeny.

Hvordan slettes lagrede resultater? Se kapittel 4.5 i brukarmanualen.

Feilmelding:

Hvis feilmeldingen "farlig PE spenning" vises i displayet, Gjøres følgende:

- Trykk på setup knappen og gå ned til menyen TN-TT /IT nett. Gå inn i menyen ved å trykke på F3 knappen, og sjekk om Instrumentet er satt i riktig nett.
- Hvis instrumentet er satt opp med riktig nett, og fortsatt feilmeldingen vises i displayet må du benytte 3 leder ledningssett å koble sammen L2 og L3 (blå og grønn).

Denne feilmeldingen fremkommer hvis det er for høy spenning mellom fase og jord og benytter testledningen med støpselet. Dette problemet vil du kunne få når du måler på IT-nett

