Lecture Notes: Section Modulus Calculations

Recall for hull girder bending: $\sigma_b(y) = \frac{My}{I}$ FOS $= \frac{\sigma_y}{\sigma_b}$

Section modulus: $Z_{deck} = \frac{I}{y_{deck}}$ and $Z_{keel} = \frac{I}{y_{keel}}$ thus $\sigma_{deck} = \frac{M}{Z_{deck}}$ and $\sigma_{keel} = \frac{M}{Z_{keel}}$ Units: in³ (sometimes in²ft)

Bending moment at each section is calculated by integration of the load distribution (along the length of the ship)

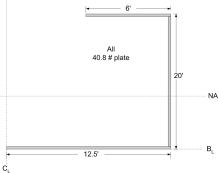
So, a naval architect needs to calculate Z_{deck} and Z_{keel} to make sure a proposed design (structural scantlings) is acceptable, or if a <u>damaged</u> ship is structurally sound.

Approach:

Parallel Axis Theorem for Moment of Inertia (2nd moment of area)

 $I_x = I_0 + A \cdot h^2$ $I_x = \text{moment of inertia} (2^{\text{nd}} \text{ moment of area}) \text{ of area about some axis of interest (x)}$ $I_0 = \text{moment of inertial} (2^{\text{nd}} \text{ moment of area}) \text{ of area through it's centroid}$ A = cross sectional areah = distance from centroid of area to axis of interest

Steps for calculating section modulus:


- 1. Calculate the area of each component (a)
- 2. Calculate the height of each component area (centroid) above the baseline (h)
- 3. Calculate the 1st moment of each component area about the baseline (ah)
- 4. Calculate the moment of inertia $(2^{nd} \text{ moment of area})$ of each component about the baseline (ah^2)
- 5. Calculate the moment of inertia of each component about its own horizontal centroidal axis (i)

For vertical or horizontal plate/shape (breadth b, depth d): $i = \frac{bd^3}{12}$

6. Calculate the height of the NA above the baseline ($h_{NA} = \sum ah / \sum a$)

- 7. Calculate the moment of inertia of the total section about the baseline $(I_{BL} = \sum ah^2 + \sum i)$
- 8. Calculate the moment of inertia of the total section about the NA $(I_{NA} = I_{BL} Ah_{NA}^2)$
- 9. Calculate the section modulus for deck and keel

Example: Box-shaped barge from lecture 4

A (11)		215 $1(11 25)$
Create a table i	(see also Hughes to	g. 3.15 and table 3.5)
Cicule a tuble	(bee also flughes high	-5.15 und -1010 5.5

Item	Scantlings	Area	Height	1 st moment	2 nd moment	2 nd moment about own	
	(b x d)	$a(in^2)$	ABL	ah (in ³)	about BL	centroid	
	(in)		h (in)	· · ·	ah^2 (in ⁴)	i (in ⁴)	
Deck	72 x 1	72	239.5	17,208	4,129,938	6	
Side pl	1 x 238	238	120	28,560	3,427,200	1,123,439	
Bottom pl	150 x 1	150	0.5	75	37.5	12.5	
Total						$\sum i = 1,123,457.5$	
$(\frac{1}{2} \text{ section})$							

Height of NA above BL: $h_{NA} = \frac{\sum ah}{\sum a} = \frac{45,843}{460} = 99.66 \text{ in } \approx 100 \text{ in } \approx 8.3 \text{ ft}$

Total Moment of inertia of section about NA:

$$I_{BL} = I_{NA} + A \cdot h_{NA}^{2} \rightarrow I_{NA} = I_{BL} - A \cdot h_{NA}^{2} = \sum_{I_{BL}} i + \sum_{I_{BL}} ah^{2} - (\sum a) \cdot h_{NA}^{2} = 1,123,457.5 + 7,557,175.5 - (460) \cdot (99.66)^{2} = 4,111,860 in^{4}$$

...but this is only $\frac{1}{2}$ the section, so $I = 8,223,720 \text{ in}^4$ Max stress and FOS ?

$$y_{max} = y_{deck} = 140 \text{ in}$$
 so $Z_{deck} = \frac{I}{y_{deck}} = \frac{8,223,720 \text{ in}^4}{140 \text{ in}} = 58,741 \text{ in}^3$

From the loading example: $M_{max} = 34,800$ ft-LT

$$\sigma_{deck} = \frac{M}{Z_{deck}} = \frac{34,800 \text{ ft} - \text{LT}}{58,741 \text{ in}^3} \left(12\frac{in}{ft} \right) \left(2240\frac{lb}{LT} \right) = 15,925\frac{lb}{in^2}$$

FOS = $\frac{\sigma_Y}{\sigma_h} = \frac{36 \text{ ksi}}{15.9 \text{ ksi}} \approx 2.3$

Notes:

This is still water! Wave w/ trough amidships (sagging) worse! (fix by distributing load) This is a compressive stress, so the deck plating could also fail due to buckling ...later

Only "longitudinally-continuous" and "rigidly-mounted" structure counts (not all structure is effective) General rule of thumb: $40\% L_{BP}$

"Shadow Zones" near hatch openings & discontinuities

For inclined plate (width w, thickness t, angle to horizontal θ): $i = \frac{wt(w^2 \sin^2 \theta + t^2 \cos^2 \theta)}{12}$

For curved plate (radius r, area a): $i = \left(\frac{1}{2} - \frac{4}{\pi^2}\right)ar^2$ $h = \frac{(\pi - 2)}{\pi}r$